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Abstract

The large strain field near a notch tip in some kinds of rubber materials under tension is reinvestigated.
The completely analytical solution of the mapping functions are obtained for both expanding sector and
shrinking sector. The stress singularity is expressed by notch angle precisely. This solution is derived from a
typical elastic law but it is proved to be valid for a wide kind of rubber material. 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

The stress singularity near a notch tip is an important problem for design when fracture is
considered. Within the framework of linear elasticity, this problem has been studied by Williams
(1952). For rubber-like materials that can endure very large strain, the analysis of singular field
must be based on the nonlinear elasticity theory. When strain is really large, the K field and HRR
field are no longer valid to represent the stress and strain states near a crack tip. Some effects of
finite deformation on homogeneous and interfacial fracture were summarized by Geubelle (1995).
The large strain fields near a notch tip were analyzed by Gao and Gao (1996) and Wang and Gao
(1997) based on two different kinds of elastic laws proposed by Gao (1990, 1997), respectively.
The solution for shrinking sector obtained by Gao and Gao (1996) and Wang and Gao (1997) are
given numerically, the closed mathematical solution is obtained in the present paper so that the
stress singularity is expressed by notch angle.

It is shown that the notch tip stress field obtained by both Gao and Gao (1996) and Wang and
Gao (1997) are in uniaxial tension state. This feature is similar to that obtained by Knowles and
Sternberg (1973) for crack that is based on a quite different elastic law. The interesting questions
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are (1) why the notch tip fields possess the same feature for various elastic laws? (2) what is the
relation between the analysis given by Gao and Gao (1996) and Knowles and Sternberg (1973)?

2. Basic formulae

Consider a three-dimensional material domain. Let Xi (i = 1,2,3) denote the Lagrangian coor
dinate of a point. P and Q denote the position vectors of a point before and after deformation,
respectively. Two local triads are defined as

ap
P,. = .,

ax'
(1)

The displacement gradient tensor is given by

F= Q,0P' (2)

where the summation rule is implied, 0 is the dyadic symbol, pi is the conjugate of Pi' The
following three invariants of deformation will be used,

{
J = (Qi ".QJ ·(Pi .pJ), L 1 = (Qi. QJ) ·(Pi"P;)

J = (Q]. Q2' Q3)/(P1 • P2, P3)
(3)

(4)

in which (*10 *2' *3) denotes mixed product of*1o *2 and *3'
Let U denote the strain energy per unit undeformed volume. the Cauchy stress can be given as

au
r =J. 1-0Q

aQi '

The following relations are important,

oJ aLl _I oj
aQ,. 0 Qi = 2d, aQi 0 Qi = - 2d • aQ,. 0 Qi = J. E

where

The equilibrium equation can be written as

(5)

(6)

. or
Q' ...._.. = 0 (7)ax,.

Three kinds of strain energy used by Gao (1990, 1997) and Knowles et al. (1973) are

UG1 = a*(IjJ2!3y +b(J2 _l)mJ- 21 (8)

Um = a(r +l'~ I) (9)
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(
I)N

UKS = AI+Bl+C
J2

in the present paper the energy (9) is used. The relation of (8)-(10) will be discussed later.

3. Expanding sector

5561

(10)

Consider a two-dimensional notched specimen, before and after loading the specimen is shown
in Fig. lea) and (b). Since the deformation near the notch tip is very large, as analyzed by Gao
and Gao (1996), the deformation cannot be described by a uniform mapping function. Therefore,
the field is divided into one expanding sector EX and two shrinking sectors, SH, SH' as shown in
Fig. 1. Before loading, EX is very narrow while SH and SH' occupy almost the whole notch tip
field. After loading, EX becomes very wide and occupies almost the whole notch tip field, but SH
and SH' become very narrow.

Two Lagrangian coordinates are introduced (R, e, Z) are the cylindrical coordinates before
deformation while (r, e, z) are cylindrical coordinates after deformation. Under plane strain
condition, the mapping functions from (R, e, Z) to (r, e, z) for sector EX are assumed as

r = R1+fip(O, ~ = eR-\ -OC; < ~ < Cf)

e= w(~), z == Z, (11 )

where a, f3 are positive constants to be determined. lei < eo, eo is a very small positive number.
According to (1) and (11), the local triads are obtained,

r i
(R,E»

SH SH .~. : (r,e)

...... ... of': :- ...... ,....J EX

<1l SH' SH'

1 1 1 1
(a) before loading (b) after loading

Fig. I. Notched rubber specimen (a) before loading, (b) after loading.
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{
QR = Rfi{[(1 +f3)p-rx~p']er-rx~pw'eo}

Qe = R/i-~+ I (p'er - pw'eo)

in which en eo are the unit vectors, i.e.

DQ 1 1 i3Q
er = Qr = --::;--, eo = - Qo = - --;::--e

or r r 0

(12)

(13)

Noting that pR. pR = 1, pR. pC') = 0, pe. p0 = R- 2, using (3) and (12), neglecting the higher-order

terms of R, the invariants are obtained,

(14)

where

(15)

In this paper the energy expression (9) is used, then according to (4)-(6) the Cauchy stress T is

where

d = R2/i-2X[p'2er ® er+p2 w'2 eo ® eo +p'pw'(er ® eo +eo ® er)J

d I = R-2/iv-2[p'2eo ® eo+p2w'2 er ® er-p'pw'(er ® eo+eo ® er)]

(16)

(17)

As analyzed in [3], for the case rx = 2f3, the two terms in (16) are the same order, but finally there
is no solution because it cannot match with the shrinking sectors. So we assume that rx > 2fJ, then
only the first term in (16) is dominant, therefore,

in which

Ie =(2N-I)rx-2(N-I)#

Substituting (18) into (7), results in

,
" ,0 0 ",., p , 0p - pO) - = , 0) + L -- W =

P

the symmetry solutions to egn (20) are

Where Po and k are constants to be determined by assembling different sectors.
Substituting (21) into (18) and noting (11), it follows,

(I8)

(19)

(20)

(21 )
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n
/81 < 2 (22)

(22) means that in sector EX (181 < n/2) the stress state is uniaxial tension.

4. Shrinking sectors

It can be seen from (21) that when ~ ---+ ± 00 function p ---+ 00, so the mapping functions (II)
become not valid, i.e. the problem must be considered in sectors SR (and SR'). In the shrinking
sector SR, we assume that

, n
r = R 1'\p(0), () = 2- R"ljJ(0), Z == Z

where b, yare positive constants to be determined.
According to (I), (13) and (23) the local triads are obtained,

QR = R- bcp[(I-(5)er -yWljJeo]

Qe = RI~b(cpler-R"cpljJ'e())

From (3) and (24), the dominant terms of invariants are given as

I R -1J J R"-2J I R 2,5-?" --0= p, =' q, -I = -'pq -

where

p = cp'1 + (l_b)2cp1

q = cp[ycp'ljJ - (1- b)cpljJ']

The Cauchy stress is also given by (16), but d and d - 1 is given by

d = R 2J[per ® er - R;'S(er ® eo+eo ® er ) +R2;Ter! ® eo]

d- I = R 1,)-1;q-2[peO ® eo + RYS(er ® eo+eo ® er)+R 2;'Ter ® er ]

n which

(23)

(24)

(25)

(26)

(27)

(28)

(29)

[n order to derive the equilibrium equation, the following relations that are obtained from (23)
are needed.

(30)

eqn (30) implies that
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1 8 ., 0
-- '" R-'-
r of) O"r

From (7) and (31) it follows that

According to (32), (16), (25), (27) and (28) the relation between y and b is matched,

y = 2N(jI(N+ 1)

(31)

(32)

(33)

then (16) is reduced to

r = K- A • 2NapN-1 q-I [per ® er- RYSeer ® elJ +ee ® er)+R 2Y(T _pq-2N)ee ® ee] (34)

in which

y = 2b (N- _1_)
N+l

(35)

(36)

(34) shows that only the component rrr is dominant, on the other hand, the sector SH is located
at the line of e = n12, therefore, in sector SH the stress state is uniaxial tension along e= n12. This
is consistent with that obtained by Knowles and Sternberg (1973) for crack problems.

Equations (7), (30) and (32) can be used to get

(Alj/ +yljl d~ + ;2 )cqNq-l) - [(A-Y) ~ + (I-b) d~}pN-I Sq-I) = 0

[
Ue-2Y) q/ +(I_b)~](pN-lTq-l _pNq -2N-I)_ [(A-y)ljI'

qJ de

d 2q]+yljI~ + - (pN-1Sq-l) = 0
de qJ2

The first of (36) finally is reduced to

(37)

(37) is an equation that only contains the unknown qJ.
The second of (36) can be reduced to

ljI"[1 + (2N+ l)(l_b)2qJ2pq-2N-2] +qJ" [2(N -1) qJ;' - (l-b)2qJ (2NS+ :~)q-2N-2]

2S 2 '+ -2 -Y(A- 2y)ljI+ _(l-b)2(N-l)qJqJ'ljI' +~ q-2N-2 [(l-b)(l-b-y)(2N+ 1)pqJ2lj1'
qJ P qJ

-(l-(j-A+2y)pq-2N(l-b)qJ'2q] = 0 (38)
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5. Boundary conditions

For sector SH, the mapping functions cp, ljJ must meet the following natural boundary conditions

cp(O) = 0

ljJ(O) = 00

(39)

(40)

so that the displacements are continuous when sector SH is connected with sector EX.
Further, let <I> denote the notch angle, then at the notch margin E> = E>* = n-<I>/2, the traction

free conditions must be satisfied, i.e.

<I>
L' Qe = 0 at E> = E>* = n-

2
(41)

On the other hand, the expression (34) is given in coordinate r, (), so it cannot be used directly for
eqn (41). In order to consider conditions (41), the eqn (24) is inverted as

(42)

Using (42) and (34) we obtain

(43)

From (41) and (43) it follows that at E> = E>*

(44) is equivalent to

cp/(E>*) = 0

N-l -2N
ljJ/(E>*) = -(l-b)-.'V+J[cp(E>*)]N+I

6. Solution of the eigenvalue problem

(44)

(45)

(46)

Equation (37) and boundary conditions (39) and (45) can be solved analytically. From (37),
after some manipulating, we obtain
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[
N-I Jbpl--b p-2(1-<5)_-qJ2 = const
2N-I

Let

qJ = pin/}, qJ' =(1-<5)c;cos/}

then (47) gives

b

c; = C;0[N-(2N-I)<5+(N-I)cos2/}]-2

in which :;0 is a constant.
Using (48) and (49) qJ can be eliminated, then

d/} [I + (2N -1)<5 J- I
de N - (2N -1)<5+ (N-I) cos2/}

Noting (48) and boundary condition (39), the particular solution of (50) is

b
e = /} + -----~- arc tg(£ tg /})

£(1-6)

where

_[_1- (2N -: 1)<5 JI12
£ - (2N -1)(1-<5)

At the notch margin, boundary condition (45) requires that /} = n/2, then (51) gives

~ [ 1+ £(1 ~ J)J= e* = n - ~

(47)

(48)

(49)

(50)

(51)

(52)

(53)

eqn (53) shows that only when <I> < n, the notch tip possesses singularity (<5 > 0). From (53), b
can be expressed precisely,

f
··---------

,Ne I-e
6 = ---.--- [ 1+ ---(2N - 1) - IJ

(2N -1)(1-e) N 2e

in which

(54)

(55)

By means of (48), (49) and (51), the solution of (37) is given with a free parameter :;0 that
indicates the amplitudes of the field.

Using (48), (49) we have
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6

cp(E>*) = [1 - (2N - 1)£5] - 2~O

6 6
cp'(O) = (1-£5)1-2(2N-l)~2so (56)

The extreme case is <t> = 0, then the notch becomes a crack, and (53) becomes 8 = £5/(1-£5),
(. = 1/(2N). By inverting (51) we have

N
tgry = sin E>(Q-cosE» (57)

where

[ (
1)2 JI

/

2
Q = I - 1- N sin2 E>

From (48), (49) and (57), it follows

(N)! ~6 -, [ ( 1) J~-2~'Vcp = sOl- (Q-cosE»I!~ Q+ 1- N cosE>

(58)

(59)

The expression (59) is essentially the same as the solution given by Knowles and Sternberg (1973)
for a crack.

'7. The solution of "'(0)

When cp is given, eqn (38) with boundary conditions (40) and (46) can be solved numerically as
performed by Wang and Gao (1997). The boundary condition (40) is always satisfied automatically
but the boundary value "'(E>*) is a free parameter that is expected to be determined by the condition
given in Section 10. The analysis of (38) shows that when E> ~ 0,

tjJ(E» ~ c,jJE> I, E> ~ 0

II/here CojJ is a constant dependent on the values of both so and I/I(E>*).

It Comparison of three elastic laws

(60)

The elastic law (8) contains two terms, i.e. the deviator and the hydrostatical stress. Elastic law
(9) also contains two terms which reflect the response to tension and compression, respectively. In
clastic law (10), the first term represents the response to tension while the second term is hydrostatic
~ tress. Certainly, above three of elastic law possess different physical meaning. However, the
wlution to crack (or notch) tip field obtained by Gao and Gao (1996), Wang and Gao (1997) and
Knowles and Sternberg (1973) appears some common features, i.e. all of the fields are in uniaxial
tension state. The solutions given by Gao and Gao (1996) and Wang and Gao (1997) for expanding
sector are the same, in shrinking sector are also the same for function cpo In the solution given by
Knowles and Sternberg (1973), the expanding sector was ignored but the solution is essentially the
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same with that given by Gao and Gao (1996) and Wang and Gao (1997) in shrinking sector
(q; +-+ V2' q;ljJ +-+ VI)·

In order to explain above interesting facts we should write down the stresses according to strain
energies given by Gao (1990,1997) and Knowles and Sternberg (1973),

2n ( I)TCI =2na*r- 1J-3"-1 d-
3

E +2b(J2-l)m-fJ-2f-I[(m_t)J2+ t]E

TG2 = 2NaJ- 1(IN-l d- I~lld- I )

TKS = 2NJ- I(AI+BJ+CIJ- 2)N-l [(A+CJ- 2)d+J (~-CIJ-3)E] (61 )

where d and d- I are given by (17), (27) and (28), respectively, for different sectors.
The analysis by Gao and Gao (1996), Wang and Gao (1997) and Knowles and Sternberg (1973)

shown that the dominant terms of stress near the crack (or notch) tip are reduced to

J = [ na*r ]2n+6(m-f)
3(m- t)b

(62)

TC2 = 2NaJ- l
l''1-1 d

T KS = 2NANJ- IIN-I d, J = C~ I} 13

(63)

(64)

Comparing the eqns (62)-(64) we can see that the three elastic laws possess the same essence
provided,

3(m-t)n liN
3( )

= N, A = a ,
m-t+n

-n

na* [ na* }+3(m- O= a
N 3(m-t)b (65)

that is why all of the three elastic laws give the same solutions for expanding sector and the same
solution of q; for shrinking sector. The difference of above three elastic laws only influence the
solution of function ljJ in shrinking sectors.

It should be noted that the value of <5 obtained by Gao (1990, 1997) and Knowles and Sternberg
(1973) are given as <5 CI = 1/(2n) + [1/(6(m - t))], <5C2 = 1/(2N) = <5KS this is consistent with the first
of (65).

Next, consider the solution of ljJ in sector SH for elastic laws (62) and (64).
According to the second of (62), it follows that

y I 3n [na* 2n+6(m-f)
(1-<5)ljJl_-;pq;'ljJ+ q;2 P2n+6(m-f)' 3(m-t)b =0 (66)

eqn (66) can be solved numerically as performed by Gao and Gao (1996). The natural boundary
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condition t/J(O) = 00 is satisfied automatically, but the initial value t/J(8*) is a free parameter that
::annot be determined by the asymptotic solution. When 8 -+ 0, it follows that,

t/J(8) = CljJ8- 1

~qn (66) and the second of (56) give,

1 [na* ]2n+6(m-t) Ii Ii n-6(m-t)
CljJ = )b [(1-b)I-2(2N-1)-2~o]n+3(m-t)

l+y-b 3(m-t

where N is given by the first of (65).
According to the second of (64), it follows that

" (2C)I/3 P 1/3
(1- b)t/JI - -'- q/t/J + -B -, = 0

cp cp~

(67)

(68)

(69)

~qn (69) can be solved numerically, but the initial value t/J(8*) is a free parameter that cannot be
determined by the asymptotic solution.

When 8 -+ 0, the asymptotic behavior of t/J(8) is also given by (67).
From the second of (56) and (69), it follows that,

(70)

~o, both for elastic laws (62) and (64), CljJ is expressed by ~o.

Ii). Assembly of sectors

The method of sector division does not mean that the different sectors are isolated by some strict
'Joundaries. Actually, in sector EX when ~ -+ 00, the solution must be translated to that in sector
SH when 8 -+ O. Now, comparing the limiting expression of p, w (~ -+ 00) and cp, t/J (8 -+ 0), we
assemble the sectors EX and SH. When ~ -+ 00, from (21) we have

IT
P = Pok~, w = 2: _(k~)-l

Substituting (71) into (11) it follows that

On the other hand, from the second of (56), (60), (67) and (23) we have,

(71)

(72)
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(73)

Comparing (72) and (73), it is required that

j3=y-6, :J.=}', k=l/CIj;

6 6
Po = CIj;(I-6)1~2(2n-l)-2:~o (74)

Thus, the mapping functions P, OJ, qJ and ljJ are identical at the boundary of different sectors, so
the displacements and stresses are continuous from one sector to another.

10. Additional requirement

For all the three elastic laws (8)-(10), the parameters Po and k of sector EX are related with ~()

and CIj; of sector SH by eqn (74). For elastic law (8) and (10), CIj; is not an independent parameter
because of (68) and (70). For elastic law (9), the value of CIj; depends on both ~() and tf;(8*). Since
there is no restriction on ljJ(8*), c./J seems to be free.

If the ignored term d--] in eqn (16) is considered, and we further require that err = 0 at ~ = 0,
then we have

ro!- lR2/i~2~ [p1 2+R 2a(l +13)2 p2] = I'~ll R - 2/iv- 2p2OJ'2

Since:J. = 2Nj3/(N-1), using (21) at ~ = 0 it follows that

lv'+] 2lV

k = (1 +j3)7~ipo ;v:.1

Further using relations (74), it follows that

1 6 6 2/1/
CIj; =-13 [~o I (1-6)2 -I (2N -1)2:]N+]

1+

(75)

(76)

(77)

The relation (77) provides a condition to determine the value of tf;(8*) by the numerical solution
of (38). Therefore, if the additional requirement err = 0 (at ~ = 0) is reasonable, the field obtained
for elastic law (63) only contains one parameter ~(). Detailed analysis shows that the condition
err = 0 (at ~ = 0) means the stress state in expansion sector is exactly in uniaxial tension. It should
be noted that for elastic laws (62) and (64), the initial value ljJ(8*) cannot be determined.

11. Concluding remarks

• The notch tip field of the rubber material discussed in this paper contains an expanding sector
and two shrinking sectors.

• The solution given by Knowles and Sternberg (1973, 1974) is only for shrinking sectors that
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become very narrow after deformation. The expanding sector that occupies almost the whole
deformed crack tip field was ignored by them.

• The singularity of notch tip field is expressed by N and the notch angle <I> in eqn (54).
• The solution obtained by Gao and Gao (1996), Gao (1997) and Knowles and Sternberg (1973)

possess the same feature, i.e. stress state is uniaxial tension. This fact can be explained by the
common character of the elastic laws under certain strain state.

• The difference of elastic laws (8)-(10) only appears in the solution of ljJ in sector SH. For elastic
laws (8) and (10), ljJ(0*) cannot be determined by the asymptotic solution. For elastic law (9)
with an additional condition, ljJ(0*) can be determined numerically.

• An interesting problem that is worthy to mention is that the common used K field
(8 ~ r~I;2,(J ~ r~I;2) and HRR field (8 ~ r~I7;(n+l),(J '" r~l/(n+l)) are only valid for small strain
case (8« 1). The solution of this paper is only for large strain case (e» 1). There exists a finite
strain solution (e '" 1) in between the K or HRR solutions and the solution for rubber. Therefore
the solution of this paper cannot be directly connected with K or HRR fields.
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